
1

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

AVSI Guide to the Certification of Systems with
Embedded Object-Oriented Software

Gary DaughertyGary DaughertyGary DaughertyGary Daugherty

Roc kwell CollinsRoc kwell CollinsRoc kwell CollinsRoc kwell Collins

gwdaughe@gwdaughe@gwdaughe@gwdaughe@rockwellcollinsrockwellcollinsrockwellcollinsrockwellcollins .c om.c om.c om.c om

31 9.295.406531 9.295.406531 9.295.406531 9.295.4065

Page 2 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Aerospace Vehicle Systems Institute

What is AVS I?What is AVS I?What is AVS I?What is AVS I?
• A cons ortium of B oeing and its s uppliers

• A forum for collabora tive res ea rch and rela ted efforts

• Managed by Texa s A&M

• Two technica l panels

• This project is s pons ored by the AVS I Common Tools & Proces s es Panel

• Pa rticipants : B oeing, B .F. Goodrich, Honeywell, Rockwell-Collins

2

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 3 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Project: AFE #7 Certification Issues for Embedded
Object-Oriented Software

S itua tionS itua tionS itua tionS itua tion
• Object-Oriented s oftwa re is rapidly becoming commonplace s ince it

reduces cos t via reus e

• However, it ha s not been widely us ed in s a fety-critica l a vionics s oftware
• DO-1 78B and FAA do not have explicit guidelines for the us e of this

technology

• As a res ult, individua l programs have verification and certification ris ks

Page 4 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Project: AFE #7 Certification Issues for Embedded
Object-Oriented Software

IdeaIdeaIdeaIdea
• Identify and res olve is s ues s pecific to Object-Oriented s oftwa re with

res pect to DO-1 78B by pooling the res ources of B oeing and its s uppliers

Approac hApproac hApproac hApproac h
• Document the guidelines : A Guide to the Certification of Systems with

Embedded Object-Oriented Software

• Eva lua te s upporting tools , e .g. for coverage and enforcement

• Make FAA pres entations and obta in their concurrence

• Cooperate with FAA funded effort by John Chilens ki to define coverage
requirements

3

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 5 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Participating Company Team Members

Boeing
Co-Principal Investigator

John Chilenski
Seattle, WA

Honeywell
Co-Principal Investigator

Dennis Cornhill, Wayne Schultz
Minneapolis, MN

BFGoodrich
Co-Principal Investigator

Tom Rhoads
Vergennes, VT

Rockwell Collins
Prime Contractor

Gary Daugherty
Cedar Rapids, IA

AVSI David Lund
College Station, TX

Team

Page 6 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Issues

The projec t addres s ed us e of the following OO fea tures :The projec t addres s ed us e of the following OO fea tures :The projec t addres s ed us e of the following OO fea tures :The projec t addres s ed us e of the following OO fea tures :
– Dynamic dis pa tch

– S ingle inheritance of interfaces and the overriding of opera tions

– S ingle inheritance of implementation and the overriding of methods

– Multiple inheritance of interfaces and implementa tion

– Inlining

– Templa te cla s s es and templa te opera tions

– Dead and deactiva ted code in reus able components

4

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 7 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Result

• OO fea tures eva lua ted with res pect to their impact on the ana lys is and
tes ting requirements of DO-1 78B

• Res ults s ummarized in tables s imila r to thos e appearing in Guide for the
Use of the Ada Programming Language in High Integrity Systems, IS O/IEC
PDTR 1 5942

• Res trictions defined by a collection of des ign and proces s “pa tterns ”

• Expres s ed firs t a t a des ign level, then mapped to language s pecific rules

• Rationa le for the guidelines

• Rela ted tool s upport

A A A A Guide to the Certific a tion of S ys tems w ith E mbedded Objec t-Guide to the Certific a tion of S ys tems w ith E mbedded Objec t-Guide to the Certific a tion of S ys tems w ith E mbedded Objec t-Guide to the Certific a tion of S ys tems w ith E mbedded Objec t-
Oriented S oftwareOriented S oftwareOriented S oftwareOriented S oftware

Page 8 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

General guidelines

Issue FA RC SU TA OMU RT SC

1. Dynamic dispatch Rstr1 Inc Inc Rstr2 Inc Rstr3 Rstr3,4,5

2. Inline Rstr7 Inc Rstr8 Rstr8 Inc Inc Rstr 9, 10, 15

3. Dead code Exc Exc Exc Exc Exc Exc Exc

4. Deactivated code Rstr13 Rstr13 Rstr14 Rstr14 Rstr14 Rstr13 Rstr13

5. Single inheritance of
interfaces and
overriding

Inc Inc Inc Inc Inc Rstr3 Inc

6. Multiple inheritance of
interfaces

Inc Inc Inc Inc Inc Rstr3, 6 Inc

7. Single inheritance of
implementations and
overriding

Rstr Inc Inc Rstr Inc Rstr3 Rstr3

8. Multiple inheritance of
implementations

Rstr11 Inc Inc Rstr Inc Rstr3 Rstr11

9. Template classes Rstr12 Inc Rstr12 Rstr12 Inc Inc Rstr12

10. Template operations Rstr12 Inc Rstr12 Rstr12 Inc Inc Rstr12

5

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 9 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

DO-178B specific guidelines

Issue Level A Level B Level C Level D

1. Dynamic dispatch Rstr1, 2, 3 Rstr1, 2 Rstr1, 2 Rstr1

2. Inline Rstr6,7,8 Rstr6,8 Rstr6,8 Rstr

3. Dead Code Exc5 Exc5 Exc5 Rstr

4. Deactivated Code Rstr11 Rstr11 Rstr11 Rstr11

5. Single inheritance of interfaces
and overriding

Rstr1, 2 Rstr1, 2 Rstr1, 2 Rstr1

6. Multiple inheritance of
interfaces

Rstr1, 2, 4 Rstr1, 2, 4 Rstr1, 2, 4 Rstr1, 4

7. Single inheritance of
implementations and overriding

Rstr1, 2 Rstr1, 2 Rstr1, 2 Rstr1

8. Multiple inheritance of
implementation

Exc9 Exc9 Exc9 Rstr1, 9

9. Template classes Rstr10 Rstr10 Rstr10 Rstr10

10. Template operations Rstr10 Rstr10 Rstr10 Rstr10

Page 10 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.1: Inheritance with overriding

3 rules + genera l guidance

Addres s es is s ues rela ted to inheritance , overriding a nd dis pa tch

1 . S imple overriding rule

2. S imple dis pa tch rule

3. Initia liza tion rule

6

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 11 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Inheritance

• Inherita nce wa s origina lly viewed a s a mecha nis m for s ha ring
code and data definitions

• As unders tanding of OO modeling ha s matured, however, the
focus ha s increa s ingly been on the s pecifica tion of interfaces

• And the s pecifica tion of interfaces a s ‘contra cts ’ between clients
and implementers

Page 12 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Classes

Cla s s Cla s s Cla s s Cla s s ≈≈≈≈ Ada 83 pa c kage s pec that Ada 83 pa c kage s pec that Ada 83 pa c kage s pec that Ada 83 pa c kage s pec that
defines a rec ord type & a s s oc ia teddefines a rec ord type & a s s oc ia teddefines a rec ord type & a s s oc ia teddefines a rec ord type & a s s oc ia ted
opera tionsopera tionsopera tionsopera tions

Cla s s ins ta nc e = objec tCla s s ins ta nc e = objec tCla s s ins ta nc e = objec tCla s s ins ta nc e = objec t

AAAA

7

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 13 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Attributes

Attribute Attribute Attribute Attribute ≈≈≈≈ Rec ord fie ld Rec ord fie ld Rec ord fie ld Rec ord fie ld
public (+)public (+)public (+)public (+)
protec ted (#)protec ted (#)protec ted (#)protec ted (#)
priva te (-)priva te (-)priva te (-)priva te (-)

AAAA

Page 14 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Operations, methods, signatures

Opera tion Opera tion Opera tion Opera tion ≈≈≈≈ s ubprogram s pec s ubprogram s pec s ubprogram s pec s ubprogram s pec

Als o public (+), p rotec ted (#), p riva te (-)Als o public (+), p rotec ted (#), p riva te (-)Als o public (+), p rotec ted (#), p riva te (-)Als o public (+), p rotec ted (#), p riva te (-)

Method Method Method Method ≈≈≈≈ s ubprogram body s ubprogram body s ubprogram body s ubprogram body

S ignature, e .g . “m (p : Integer)”S ignature, e .g . “m (p : Integer)”S ignature, e .g . “m (p : Integer)”S ignature, e .g . “m (p : Integer)”

OverloadingOverloadingOverloadingOverloading

Cons truc torCons truc torCons truc torCons truc tor

Des truc torDes truc torDes truc torDes truc tor

AAAA

8

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 15 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Method calls

x: A;x: A;x: A;x: A;

…………

x.m(i);x .m(i);x .m(i);x .m(i);

Dec la red typeDec la red typeDec la red typeDec la red type

Rema iningRema iningRema iningRema ining
a rgumentsa rgumentsa rgumentsa rguments

Ta rget objec tTa rget objec tTa rget objec tTa rget objec t

AAAA

m(a : int)

Page 16 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

o ()o ()o ()o ()
n (Integer) :n (Integer) :n (Integer) :n (Integer) :
FloatFloatFloatFloat

m (Integer)m (Integer)m (Integer)m (Integer)
n (Integer) :n (Integer) :n (Integer) :n (Integer) :
FloatFloatFloatFloat

B inherits the elements of AB inherits the elements of AB inherits the elements of AB inherits the elements of A
It ma y a ls o override themIt ma y a ls o override themIt ma y a ls o override themIt ma y a ls o override them
And ma y add e lements of its ownAnd ma y add e lements of its ownAnd ma y add e lements of its ownAnd ma y add e lements of its own

Background: Inheritance with overriding

AAAA

BBBB

9

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 17 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Polymorphism

• Polymorphis m permits ins tanc es of a s ubc la s s to bePolymorphis m permits ins tanc es of a s ubc la s s to bePolymorphis m permits ins tanc es of a s ubc la s s to bePolymorphis m permits ins tanc es of a s ubc la s s to be
a s s igned to va riables dec la red to be a n a s s oc ia tedas s igned to va riables dec la red to be a n a s s oc ia tedas s igned to va riables dec la red to be a n a s s oc ia tedas s igned to va riables dec la red to be a n a s s oc ia ted
s uperc la s ss uperc la s ss uperc la s ss uperc la s s

ta rget: Decla redType = new RunTimeType();

• Dynamic dis pa tc h ens ures the method exec uted by a c a ll isDynamic dis pa tc h ens ures the method exec uted by a c a ll isDynamic dis pa tc h ens ures the method exec uted by a c a ll isDynamic dis pa tc h ens ures the method exec uted by a c a ll is
that a s s oc ia ted w ith the objec t’s run time typethat a s s oc ia ted w ith the objec t’s run time typethat a s s oc ia ted w ith the objec t’s run time typethat a s s oc ia ted w ith the objec t’s run time type

ta rget.opera tion (a rguments);

Page 18 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Polymorphism

x : A = new B ;x : A = new B ;x : A = new B ;x : A = new B ;

…………
x.m(i);x .m(i);x .m(i);x .m(i);

Run-time typeRun-time typeRun-time typeRun-time type

Dec la red typeDec la red typeDec la red typeDec la red type

AAAA

BBBB CCCC

DDDD

m(Integer)

m(Integer)

m(Integer)

10

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 19 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

• Method s e lection is a function of the run time type and the method
s ignature

• Conceptua lly there is a s ingle dis pa tch routine for a ll ca lls
conta ining a pa ir of nes ted ca s e s ta tements
ca s e of run time type
ca s e (< type>)

ca s e of method s igna ture
ca s e (< method>)

ca ll < method> defined by < type>
end

end
• In practice , ca lls to this univers a l dis pa tch method a re ‘inlined’ a t

the point of ca ll

Background: Dynamic dispatch

Page 20 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

• Typica lly implemented us ing “dis pa tch tables ”
• S mall, fixed overhea d
• At the point of ca ll: (1) get the dis pa tch table a s s ocia ted with the

ta rget object, (2) index it by a number a s s ocia ted with the method
s ignature , and (3) invoke the method

Background: Dynamic dispatch

< methodS ignature1 >

< methodS ignature2>
…

< methodS ignatureN>

dis pa tch table for typedis pa tch table for typedis pa tch table for typedis pa tch table for type
ta rgetObjec tta rgetObjec tta rgetObjec tta rgetObjec t

run time typerun time typerun time typerun time type

11

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 21 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.1: Inheritance with overriding

1. Simple overriding rule
An operation may override an inherited operation with the same signature
by associating a method with it in the subclass definition, by making it more
visible to clients, by subtyping its return type, or by being more restrictive
regarding the types of errors it can report to clients (e.g., as exceptions or
by setting error return codes). No other form of overriding should be
allowed.
Ens ures LS P is not violated a t the language level, in terms of method
decla ra tions .

Page 22 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Associating a method with an operation in a subclass:

abs tract cla s s A {
 abs trac tabs trac tabs trac tabs trac t int m(int a);
}

cla s s B extends A {
 int m(int a) {{{{
 return a *a ;return a *a ;return a *a ;return a *a ;
 }}}}
}

AAAA

BBBB

m(a : int): int

m(a : int): int

Simple overriding rule

12

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 23 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Making an operation more visible to clients:

abs tract cla s s A {
 abs tra ct p rotec tedprotec tedprotec tedprotec ted int m(int a);
}

abs tract cla s s B {
 abs tra ct publicpublicpublicpublic int m(int a);
}

AAAA

BBBB

+m(a : int): int

#m(a: int): int

Simple overriding rule

Page 24 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Subtyping the return type:

cla s s B {
public:
 virtua l B *B *B *B * clone () {
 return new B (*this);
 }
}

cla s s D: public B {
public:
 virtua l D*D*D*D* clone () {
 return new D(*this);
 }
}

BBBB

DDDD

clone(): B

clone(): D

Simple overriding rule

13

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 25 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Restricting the types of errors reported:

interface A {
 abs tra ct int m(int a) throws Exc eptionExc eptionExc eptionExc eption;
}

interface B extends A {
 int m(int a) throws MyExceptionMyExceptionMyExceptionMyException;
}

AAAA

BBBB

m(a : int): int

m(a : int): int

Simple overriding rule

Page 26 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Overriding combinations of these properties:

abs tract cla s s A {
 abs trac tabs trac tabs trac tabs trac t p rotec tedprotec tedprotec tedprotec ted int m(int a);
}

cla s s B extends A {
 public public public public int m(int a) {{{{
 return a *a ;return a *a ;return a *a ;return a *a ;
 }}}}
}

AAAA

BBBB

+m(a : int): int

#m(a: int): int

Simple overriding rule

14

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 27 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Throwing unexpec ted exc eptions [B inder, naughty c hildren]Throwing unexpec ted exc eptions [B inder, naughty c hildren]Throwing unexpec ted exc eptions [B inder, naughty c hildren]Throwing unexpec ted exc eptions [B inder, naughty c hildren]
interface A {
 int m(int a);
}

interface B extends A {
 int m(int a) throws S omeExceptionthrows S omeExceptionthrows S omeExceptionthrows S omeException;
}

Violation of simple overriding rule

Page 28 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Redefinition of inherited default pa rameter va lues in C++ Redefinition of inherited default pa rameter va lues in C++ Redefinition of inherited default pa rameter va lues in C++ Redefinition of inherited default pa rameter va lues in C++ [S c ott[S c ott[S c ott[S c ott
Meyers , E ffec tive C++, p . 1 71]Meyers , E ffec tive C++, p . 1 71]Meyers , E ffec tive C++, p . 1 71]Meyers , E ffec tive C++, p . 1 71]
enum S hapeColor {RED, GREEN, B LUE};

cla s s S hape {
public:
 virtua l void draw (S hapeColor c olor = REDc olor = REDc olor = REDc olor = RED) cons t = 0;
 ...
};

Violation of simple overriding rule

15

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 29 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s Rectangle : public S hape {
public:
 virtua l void draw (S hapeColor c olor = GREENc olor = GREENc olor = GREENc olor = GREEN) cons t;
 ...
};

S hape *pr = new Rec tangleRec tangleRec tangleRec tangle;
prprprpr-> drawdrawdrawdraw(); // ca ll to draw defined by Rectangle

This , however, does not draw a green rectangle a s we would expect

Violation of simple overriding rule

Page 30 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

S ubtyp ing of pa rameters in E iffe l [B inder, naughty c hildren]S ubtyp ing of pa rameters in E iffe l [B inder, naughty c hildren]S ubtyp ing of pa rameters in E iffe l [B inder, naughty c hildren]S ubtyp ing of pa rameters in E iffe l [B inder, naughty c hildren]

cla s s S kier
 feature
 s hare (other: S kierS kierS kierS kier) is

…
 end
end

cla s s Girl inherit S kier redefine s hare end
 feature
 s hare (other: GirlGirlGirlGirl) is
 …
 end
end

Violation of simple overriding rule

16

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 31 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

2. Simple dispatch rule

When an operation is invoked on an object, the method associated with the
operation in its run time class should be executed.

This rule should apply to all calls except explicit calls to superclass
methods, which should be addressed as described in Pattern 4.3 (Method
Extension).

Ens ures method dis pa tch is s emantica lly equiva lent to ca s e , without
cons idering its underlying implementa tion.

Pattern 4.1: Inheritance with overriding

Page 32 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

When an operation is invoked on an object, the method associated
with the operation in its run time class should be executed.

Dis playE lement e ;

e = = = = new AltitudeTape AltitudeTape AltitudeTape AltitudeTape();

e .draw();e .draw();e .draw();e .draw();

DisplayElement

AltitudeTape
hide()
highlight()
draw()

Compass
hide()
highlight()
draw()

Te xtFie ld

hide()
draw()
highlight()

Simple dispatch rule

17

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 33 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Overriding of non-virtua l func tion in C++ Overriding of non-virtua l func tion in C++ Overriding of non-virtua l func tion in C++ Overriding of non-virtua l func tion in C++ [S c ott Meyers ,[S c ott Meyers ,[S c ott Meyers ,[S c ott Meyers ,
E ffec tive C++, p . 1 69] E ffec tive C++, p . 1 69] E ffec tive C++, p . 1 69] E ffec tive C++, p . 1 69] (is s ue: p rogrammer s pec ified(is s ue: p rogrammer s pec ified(is s ue: p rogrammer s pec ified(is s ue: p rogrammer s pec ified
optimiza tions)optimiza tions)optimiza tions)optimiza tions)
cla s s B {
public:
 void mfmfmfmf(); // mf, a s defined by B
 …
};

Violation of the simple dispatch rule

Page 34 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s D: public B {
public:
 void mfmfmfmf(); // includes a ction to mainta in inva riant for D
 …
};

B *pB = new Dnew Dnew Dnew D;
pb-> mfmfmfmf(); // ca lls B ’s mf on an object with run time cla s s D

As a res ult, we fa il to ma inta in the inva riant for object x

Violation of the simple dispatch rule

18

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 35 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

3. Initialization rule

No call to an externally visible operation of an object other than its
constructors should be allowed until it has been fully initialized.

Prevents ca lls to s ubclas s methods before s ubcla s s a ttributes have been
initia lized and s ubcla s s inva riants have been es tablis hed.

Pattern 4.1: Inheritance with overriding

Page 36 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

No call to an externally visible operation of an object other than its
constructors should be allowed until it has been fully initialized.

cla s s Y extends X {
 priva te int a ;
 priva te Vector b;

 public X(int n) {s uper();s uper();s uper();s uper(); a = n; b = c rea teVec torc rea teVec torc rea teVec torc rea teVec tor (a);}

 p rivateprivateprivateprivate Vector createVector (int s ize) { … }
}

Initialization rule

19

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 37 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Dis patc h to s ubc la s s method during objec t c ons truc tion (is s ueDis pa tc h to s ubc la s s method during objec t c ons truc tion (is s ueDis pa tc h to s ubc la s s method during objec t c ons truc tion (is s ueDis pa tc h to s ubc la s s method during objec t c ons truc tion (is s ue
= initia liza tion)= initia liza tion)= initia liza tion)= initia liza tion)

cla s s AA {
 int next;

 public AA() {next = firs tE lementfirs tE lementfirs tE lementfirs tE lement();}

 publicpublicpublicpublic int firs tE lementfirs tE lementfirs tE lementfirs tE lement() {return 1 ;}
}

Violation of the initialization rule

Page 38 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s B B extends AA {
 int min;
 int max;

 public B B (int min, int max) {
 s uper();s uper();s uper();s uper();
 this .min this .min this .min this .min = min;
 this .max = max;
 }

 public int firs tE lementfirs tE lementfirs tE lementfirs tE lement() {return minminminmin;}
}

Violation of the initialization rule

20

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 39 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Source code to object code traceability
Nearly all compilers implement [dynamic dispatch] by associating a method
table with the target object’s run time class that is indexed by a method
number at the point of call.

Where concerns about source code to object code traceability and timing
analysis dictate, the compiler vendor may be asked to provide evidence of
this mapping, or evidence of a semantically equivalent mapping that
guarantees that dispatch times are predictable and bounded.

Where concerns about source code to object code traceability lead to inspection
of the object code produced by the compiler, it may also be necessary to
examine the structure of the method tables and the compiler generated
code at the point of call.

Pattern 4.1: Inheritance with overriding

Page 40 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Dis playE lement e ;

e = = = = new AltitudeTape();

e .draw();e .draw();e .draw();e .draw();

DisplayElement

AltitudeTape
hide()
highlight()
draw()

Compass
hide()
highlight()
draw()

Te xtFie ld

hide()
draw()
highlight()

Source code to object code traceability

21

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 41 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Dis p layE lement e ;Dis p layE lement e ;Dis p layE lement e ;Dis p layE lement e ;

e = e = e = e = new AltitudeTape(); AltitudeTape(); AltitudeTape(); AltitudeTape();
e .draw;e .draw;e .draw;e .draw;

DisplayElement

AltitudeTape
hide()
highlight()
draw()

Compass
hide()
highlight()
draw()

Te xtFie ld

hide()
draw()
highlight()

dis pa tch (Dis playE lement e , Method m)
c as e of e’s run time typec as e of e’s run time typec as e of e’s run time typec as e of e’s run time type
c as e (AltitudeTape)c as e (AltitudeTape)c as e (AltitudeTape)c as e (AltitudeTape)
 c a s e of method mc as e of method mc as e of method mc as e of method m

 c a s e (draw)c a s e (draw)c a s e (draw)c a s e (draw)
 invoke AltitudeTape.draw();invoke AltitudeTape.draw();invoke AltitudeTape.draw();invoke AltitudeTape.draw();
 ca s e (highlight)

 invoke Compas s . highlight();
 ca s e (hide)
 invoke TextFie ld. hide();
 end
…
end

end

Source code to object code traceability

Page 42 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Dis p layE lement e ;Dis p layE lement e ;Dis p layE lement e ;Dis p layE lement e ;

e = e = e = e = new AltitudeTape(); AltitudeTape(); AltitudeTape(); AltitudeTape();
e .draw;e .draw;e .draw;e .draw;

DisplayElement

AltitudeTape
hide()
highlight()
draw()

Compass
hide()
highlight()
draw()

Te xtFie ld

hide()
draw()
highlight()

MOV @R0, R1 -- Get the method table addres sMOV @R0, R1 -- Get the method table addres sMOV @R0, R1 -- Get the method table addres sMOV @R0, R1 -- Get the method table addres s
ADD #2, R1 -- Add the offs et for ADD #2, R1 -- Add the offs et for ADD #2, R1 -- Add the offs et for ADD #2, R1 -- Add the offs et for ““““draw()draw()draw()draw()””””
J S R PC,@R1 -- Invoke the methodJ S R PC,@R1 -- Invoke the methodJ S R PC,@R1 -- Invoke the methodJ S R PC,@R1 -- Invoke the method

highlighthighlighthighlighthighlight

hidehidehidehide

AltitudeTapeAltitudeTapeAltitudeTapeAltitudeTape

drawdrawdrawdraw

eeee

0000

1111

2222

R0R0R0R0

Source code to object code traceability

22

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 43 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

• Think of dis pa tching a s the normal ca s e

• Think of a ll ca lls a s ma pping to the previous ins truction s equence

• S ta tica lly bound ca lls a re then an optimiza tion

• And corres pond to the s pecia l ca s e in which there is a s ingle
choice of which method to ca ll

Source code to object code traceability

Page 44 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

2 rules + genera l guidance

Addres s es is s ues rela ted to s upercla s s /s ubcla s s compatibility a nd
the reus e of verifica tion a rtifacts a nd res ults

1 . Inherited tes t ca s e rule

2. S epa ra te context rule

Pattern 4.2: Subtyping

23

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 45 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

1. Inherited test case rule

Every test case appearing in the set of test cases associated with a class
should appear in the set of test cases associated with each of its
subclasses. Only test cases for private operations (like private operations
themselves) are not inherited.

Enforces LS P without requiring forma l s pecifica tion.

Pattern 4.2: Subtyping

Page 46 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Corollary
If the subclass invariant is stronger than that of its superclasses, then a
check of this invariant (rather than the weaker superclass invariant) should
be a part of the pass/fail check of each inherited test case.

When we run the inherited tes t ca s es aga ins t a s ubcla s s ins tance we mus t
us e the s ubclas s inva riant to check the res ult.

Pattern 4.2: Subtyping

24

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 47 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

2. Separate context rule

Each method should be separately tested in the context of every class in
which it appears, irrespective of whether it is defined by the class or
inherited by it.

Tes t ca s es a re inherited but tes t res ults a re not.

Each method mus t be re-tes ted in the context of each s ubcla s s .

Pattern 4.2: Subtyping

Page 48 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

n (Integer) :n (Integer) :n (Integer) :n (Integer) :
FloatFloatFloatFloat

n (Integer) :n (Integer) :n (Integer) :n (Integer) :
FloatFloatFloatFloat

Cons ider the methods n (Integer) : F loat and
n (Integer) : Floa t
E ach ha s a precondition = initia l s ta te for
tes t ca s es
E ach ha s a pos tcondition = expected res ult
for tes t ca s es

Subtype compatibility

AAAA

BBBB

25

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 49 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Liskov Substitution Principle

Precondition of n, mus t require the s a me or
les s than the precondition of n

Pos tcondition of n, mus t de liver the s ame or
more than the pos tcondition of n

We tes t for this by “inheriting” a ll tes t ca s es

n (Integer) :n (Integer) :n (Integer) :n (Integer) :
FloatFloatFloatFloat

n (Integer) :n (Integer) :n (Integer) :n (Integer) :
FloatFloatFloatFloat

AAAA

BBBB

Page 50 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

S tronger p rec ondition in s ubc la s s [B inder, naughty c hildren]S tronger p rec ondition in s ubc la s s [B inder, naughty c hildren]S tronger p rec ondition in s ubc la s s [B inder, naughty c hildren]S tronger p rec ondition in s ubc la s s [B inder, naughty c hildren]
interface Lis t {
 ...

 /**
 * Adds an element to the lis t a t a given pos ition.
 * pos tcondition: item appea rs in the lis t
 */
 void add (Object e lement, int index) throws OutOfMemory;
}

Violation of subtyping rules: stronger precondition

26

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 51 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

interface B oundedLis t extends Lis t {
 void s etB ounds (int min, int max);

 ...

 /**
 * Adds an element to the lis t a t a given pos ition.
 * precondition:precondition:precondition:precondition: index is w ithin boundsindex is w ithin boundsindex is w ithin boundsindex is w ithin bounds
 * pos tcondition: item appea rs in the lis t
 */
 void add (Object e lement, int index) throws OutOfMemory;
}

Violation of subtyping rules: stronger precondition

Page 52 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Weaker pos tc ondition in s ubc la s s [B inder, na ughty c hildren]Weaker pos tc ondition in s ubc la s s [B inder, na ughty c hildren]Weaker pos tc ondition in s ubc la s s [B inder, na ughty c hildren]Weaker pos tc ondition in s ubc la s s [B inder, na ughty c hildren]
interface Log {
 fina l int HIGH = 1 00;
 ...

 /**
 * Writes a mes s age to the log.
 * pos tconditionpos tconditionpos tconditionpos tcondition: The mes s age appea rs in the permanent log. If theIf theIf theIf the
prioritypriorityprioritypriority
 * is HIGH or grea ter, the mes s age is a ls o dis p layed. * is HIGH or grea ter, the mes s age is a ls o dis p layed. * is HIGH or grea ter, the mes s age is a ls o dis p layed. * is HIGH or grea ter, the mes s age is a ls o dis p layed.
 */
 void writeMes s age (S tring mes s age , int priority);
}

Violation of subtyping rules: weaker postcondition

27

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 53 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

interface S impleLog extends Log {
 ...

 /**
 * Writes a mes s age to the log.
 * pos tconditionpos tconditionpos tconditionpos tcondition: The mes s age appea rs in the permanent log.
 */
 void writeMes s age (S tring mes s age , int priority);
}

Violation of subtyping rules: weaker postcondition

Page 54 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

S quare a s a s ubtype of Rec tangle, w ith inherited opera tionS quare a s a s ubtype of Rec tangle, w ith inherited opera tionS quare a s a s ubtype of Rec tangle, w ith inherited opera tionS quare a s a s ubtype of Rec tangle, w ith inherited opera tion
res ize (int width, int he ight) [B inder, s quare peg in a round hole,res ize (int width, int he ight) [B inder, s quare peg in a round hole,res ize (int width, int he ight) [B inder, s quare peg in a round hole,res ize (int width, int he ight) [B inder, s quare peg in a round hole,
faulty intuition]faulty intuition]faulty intuition]faulty intuition]

interface Rectangle {
 …

 void res izeres izeres izeres ize (int width, int height);
}

/**
 * inva riantinva riantinva riantinva riant: width == height
 */
interface S quare extends Rectangle {
 …
}

Rec tangleRec tangleRec tangleRec tangle

S quareS quareS quareS quare

res ize(…)

Violation of subtyping rules: square peg

28

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 55 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

S ubc la s s defines a method with the s ignature of a n unrela tedS ubc la s s defines a method with the s ignature of a n unrela tedS ubc la s s defines a method with the s ignature of a n unrela tedS ubc la s s defines a method with the s ignature of a n unrela ted
s uperc la s s method [B inder, ac c identa l override]s uperc la s s method [B inder, ac c identa l override]s uperc la s s method [B inder, ac c identa l override]s uperc la s s method [B inder, ac c identa l override]

cla s s S impleDirectory {
 ...

 /**
 * Add a file with a given name.
 */
 voidvoidvoidvoid addaddaddadd (S tringS tringS tringS tring file) {
 ...
 }
}

S impleDirec toryS impleDirec toryS impleDirec toryS impleDirec tory

Hiera rc hic a lDirec toryHiera rc hic a lDirec toryHiera rc hic a lDirec toryHiera rc hic a lDirec tory

add(S tring file)

add(S tring s ubdirectory)

Violation of subtyping rules: accidental override

Page 56 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s Hiera rchica lDirectory
 extends S impleDirectory {
 ...

 /**
 * Add a s ubdirectory with a given name.
 */
 voidvoidvoidvoid addaddaddadd (S tringS tringS tringS tring s ubdirectory) {
 ...
 }
}

S impleDirec toryS impleDirec toryS impleDirec toryS impleDirec tory

Hiera rc hic a lDirec toryHiera rc hic a lDirec toryHiera rc hic a lDirec toryHiera rc hic a lDirec tory

add(S tring file)

add(S tring s ubdirectory)

Violation of subtyping rules: accidental override

29

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 57 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Inherited s uperc la s s method fa ils to ma inta in s ubc la s sInherited s uperc la s s method fa ils to ma inta in s ubc la s sInherited s uperc la s s method fa ils to ma inta in s ubc la s sInherited s uperc la s s method fa ils to ma inta in s ubc la s s
inva riant [B inder, mis s ing override]inva riant [B inder, mis s ing override]inva riant [B inder, mis s ing override]inva riant [B inder, mis s ing override]

interface Window {
 ...

 /**
 * Moves a window to a pa rticula r pos ition
 * on the s creen.
 */
 void move (int x, int y);
}

WindowWindowWindowWindow

AlertWindoAlertWindoAlertWindoAlertWindo
wwww

move(…)

Violation of subtyping rules: missing override

Page 58 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

/**
 * invariantinvariantinvariantinvariant: Window appears in front of a ll others
 */
interface AlertWindow extends Window {
 ...
}

WindowWindowWindowWindow

AlertWindoAlertWindoAlertWindoAlertWindo
wwww

move(…)

Violation of subtyping rules: missing override

30

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 59 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

The s ole exception to the s imple dis pa tch rule

Permits the implementation of a s ubcla s s method in terms of its
corresponding s upercla s s method

Commonly us ed to define s ubcla s s cons tructors in terms of
s upercla s s cons tructors , but ca n be us ed to extend the
implementa tion of a ny method

Pattern 4.3: Method extension

Page 60 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Method extension rule

To extend the functionality of an inherited method, the subclass method
should explicitly call the inherited version of the same operation, followed by
additional code that extends the overall effect (postcondition).

The explicit call must be to the corresponding superclass version of the
same method and must be statically bound.

Pattern 4.3: Method extension

31

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 61 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Extension of a method’s implementation in a subclass
cla s s A {
 void m (int a) {
 // do s omething
 }
}

cla s s B extends A {
 void m (int a) {
 s uper.m(a);s uper.m(a);s uper.m(a);s uper.m(a);
 // do s omething more
 }
}

Pattern 4.3: Method extension

Page 62 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

We do not allow a method to extend a superclass method
with a different signature in this way because:

• This can lead to a confusing situation if the other method is later
overridden

• There is no need to do so; we can just call the inherited version of the
other method

Pattern 4.3: Method extension

32

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 63 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

5 rules + genera l guidance

Addres s es DO-1 78B concerns with coupling

Addres s es coupling between client a nd cla s s es

Addres s es coupling between s upercla s s es and s ubcla s s es

E ncourages da ta hiding a nd hardwa re abs traction (which s upports
pa rtitioning and reduces the cos t of future likely cha nges)

S upports the enforcement of key cla s s and s ys tem invariants
(which ma y have a direct impact upon s a fety)

Pattern 4.4: Class coupling

Page 64 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

1. Client data abstraction rule

Clients should access the data representation of the class only through its
public operations.

All attributes should be hidden (private or protected), and all strategies
associated with the choice of data representation should be abstracted by
its set of public operations.

Pattern 4.4: Class coupling

33

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 65 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

2. Client hardware abstraction rule

Clients should access any hardware abstracted by the class only through
its public operations.

All hardware registers should be hidden (private or protected), and all
strategies associated with the use of a particular hardware device should
be abstracted by its set of public operations.

Pattern 4.4: Class coupling

Page 66 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

3. Invariant rule

The invariant for the class should be a part of the postcondition of every
class constructor, a part of the precondition of the class destructor (if any),
and a part of the precondition and postcondition of every other publicly
accessible operation.

And clients should be able to influence the value of the invariant only
through execution of these operations.

Pattern 4.4: Class coupling

34

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 67 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

4. Subclass data abstraction rule

Subclasses should access the data representation of the class only
through its public and protected operations.

All attributes should be hidden (private), and all strategies associated with
the choice of data representation should be abstracted by its set of public
and protected operations.

Pattern 4.4: Class coupling

Page 68 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

5. Subclass hardware abstraction rule

Clients can access any hardware abstracted by the class only through its
public and protected operations.

All hardware registers should be hidden (private), and all strategies
associated with the use of a particular hardware device should be
abstracted by its set of public and protected operations.

Pattern 4.4: Class coupling

35

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 69 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

3 rules + genera l guidance

Addres s es is s ues rela ted to ambiguity a nd intent.

1 . Repeated interfa ce inheritance rule

2. Interface redefinition rule

3. Independent interface definition rule

Pattern 4.5: Multiple interface inheritance

Page 70 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Multiple inheritance

• Inherita nce wa s origina lly viewed primarily a s a mecha nis m for
s haring code and da ta definitions

• In this context, multiple inherita nce wa s viewed a s a mechanis m
for cons tructing a s ubcla s s implementation from multiple
s upercla s s implementations

36

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 71 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Multiple interface inheritance

• With an increa s ed emphas is on interface inheritance during
ana lys is a nd des ign, multiple inheritance is now us ed primarily a s
a means of cla s s ifying entitie s tha t logica lly be long to more tha n a
s ingle ca tegory

UnmannedVehic leUnmannedVehic leUnmannedVehic leUnmannedVehic le AirVehic leAirVehic leAirVehic leAirVehic le

UAVUAVUAVUAV

Page 72 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Multiple interface inheritance

• As a res ult, langua ges s uch a s Ja va only s upport multiple
inheritance involving interfaces

• And rely on delegation to achieve the effects of multiple
implementation inheritance

37

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 73 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

B inherits the opera tions of A B inherits the opera tions of A B inherits the opera tions of A B inherits the opera tions of A ����

It ma y a ls o override them It ma y a ls o override them It ma y a ls o override them It ma y a ls o override them ∆∆∆∆

And ma y add opera tions of its ownAnd ma y add opera tions of its ownAnd ma y add opera tions of its ownAnd ma y add opera tions of its own

 m (a : int)

 n (x: int) : float

 o ()

 n (a : int): floa t

Inheritance: Using symbols to represent operations

AAAA

BBBB

Page 74 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

1. Independently defined …

Independently defined
opera tions with the s a me
s ignature

BBBBAAAA

CCCC

38

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 75 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Inheritance “math”

?

Page 76 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

LSP

• S igna ture is the s ameS igna ture is the s ameS igna ture is the s ameS igna ture is the s ame
• Pre, weaker than either Pre , weaker than either Pre , weaker than either Pre , weaker than either � � � � or or or or ����
• Pos t, s tronger than both Pos t, s tronger than both Pos t, s tronger than both Pos t, s tronger than both ���� and and and and ����

39

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 77 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

2. Repeated inheritance

S ame element “�“ is
inherited a long more than one
pa th

CCCCBBBB

DDDD

AAAA

Page 78 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Inheritance “math”

40

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 79 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

3. Redefinition …

Redefinition a long s epara te
pa ths

CCCCBBBB

DDDD

AAAA

Page 80 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Inheritance “math”

?

41

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 81 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

LSP

• S igna ture is the s ameS igna ture is the s ameS igna ture is the s ameS igna ture is the s ame
• Pre, weaker than either Pre , weaker than either Pre , weaker than either Pre , weaker than either � or or or or �
• Pos t, s tronger than both Pos t, s tronger than both Pos t, s tronger than both Pos t, s tronger than both � and and and and �

Page 82 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

1. Repeated interface inheritance rule
When the same operation is inherited by an
interface via more than one path through the
interface hierarchy, this should result in a
single operation in the subinterface.

Makes no s ens e to provide two identica l
opera tions to clients - s o jus t one. CCCCBBBB

DDDD

AAAA

Pattern 4.5: Multiple interface inheritance

42

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 83 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Repea ted interfa c e inherita nc eRepea ted interfa c e inherita nc eRepea ted interfa c e inherita nc eRepea ted interfa c e inherita nc e

interface A {
 /**
 * pre: s ome precondition
 * pos t: s ome pos tcondition
 */
 int f(int p, int q) throws Exception;
}

interface B extends A {}

interface C extends A {}

interface D extends B , C {}

CCCCBBBB

DDDD

AAAA

Pattern 4.5: Multiple interface inheritance

Page 84 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

2. Interface redefinition rule
When a subinterface inherits different
definitions of the same operation [as a
result of redefinition along separate
paths], the definitions must be
combined by explicitly defining an
operation in the subinterface that
follows the simple overriding rule with
respect to each parent interface.

To ens ure tha t the client interfa ce is
a lways s ta ted explicitly, and to double
check intent.

CCCCBBBB

DDDD

AAAA

Pattern 4.5: Multiple interface inheritance

43

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 85 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Interfac e redefinition and joinInterfac e redefinition and joinInterfac e redefinition and joinInterfac e redefinition and join
interface A {
 /**
 * pre: s ome precondition
 * pos t: s ome pos tcondition
 */
 int f(int p, int q) throws Exception;
}

interface B extends A {
 /**
 * @override@override@override@override
 * pre: weaker precondition, B .pre
 * pos t: s tronger pos tcondition, B .pos t
 */
 int f(int p, int q) throws MyException;
}

Pattern 4.5: Multiple interface inheritance

CCCCBBBB

DDDD

AAAA

Page 86 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Interfac e redefinition and joinInterfac e redefinition and joinInterfac e redefinition and joinInterfac e redefinition and join

interface C extends A {}

interface D extends B , C {
 /**
 * @join@join@join@join
 * pre: B .pre
 * pos t: B .pos t
 */
 int f(int p, int q) throws MyException;
}

CCCCBBBB

DDDD

AAAA

Pattern 4.5: Multiple interface inheritance

44

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 87 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Interfac e redefinition and join, 2ndInterfac e redefinition and join, 2ndInterfac e redefinition and join, 2ndInterfac e redefinition and join, 2nd
exampleexampleexampleexample
interface A {
 /**
 * pre: s ome precondition
 * pos t: s ome pos tcondition
 */
 int f(int p, int q) throws Exception;
}

interface B extends A {
 /**
 * @override@override@override@override
 * pre: weaker precondition, B .pre
 * pos t: s tronger pos tcondition, B .pos t
 */
 int f(int p, int q) throws MyException;
}

CCCC

DDDD

Pattern 4.5: Multiple interface inheritance

BBBB

AAAA

Page 88 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Interfac e redefinition and join, 2ndInterfac e redefinition and join, 2ndInterfac e redefinition and join, 2ndInterfac e redefinition and join, 2nd
exampleexampleexampleexample
interface C extends A {
 /**
 * @override@override@override@override
 * pre : weaker precondition, C.pre
 * pos t: s tronger pos tcondition, C.pos t
 */
 int f(int p, int q) throws MyE xception;
}

interface D extends B , C {
 /**
 * @join@join@join@join
 * pre : B .pre or C.pre
 * pos t: B .pos t and C.pos t
 */
 int f(int p, int q) throws MyE xception;
}

CCCC

DDDD

BBBB

AAAA

Pattern 4.5: Multiple interface inheritance

45

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 89 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

3. Independent interface definition rule
When more than one parent
independently defines an operation with
the same signature, the user must
explicitly decide whether they represent
the same operation or whether this
represents an error.

Errors s hould be caught by norma l tes ting.

BBBB

CCCC

AAAA

Pattern 4.5: Multiple interface inheritance

Page 90 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Independent definition and joinIndependent definition and joinIndependent definition and joinIndependent definition and join

interface A {
 /**
 * pre : s ome precondition
 * pos t: s ome pos tcondition
 */
 int f(int p, int q) throws MyException;
}

interface B {
 /**
 * pre : the s ame precondition
 * pos t: the s ame pos tcondition
 */
 int f(int p, int q) throws MyException;
}

BBBBAAAA

CCCC

Pattern 4.5: Multiple interface inheritance

46

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 91 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Independent definition a nd joinIndependent definition a nd joinIndependent definition a nd joinIndependent definition a nd join

interface C extends A, B {
 /**
 * @join@join@join@join
 * pre : the s ame precondition
 * pos t: the s ame pos tcondition
 */
 int f(int p, int q) throws MyException;
}

BBBB

CCCC

Pattern 4.5: Multiple interface inheritance

AAAA

Page 92 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Independent definition and join, 2ndIndependent definition and join, 2ndIndependent definition and join, 2ndIndependent definition and join, 2nd
exampleexampleexampleexample

interface A {
 /**
 * pre : s ome precondition
 * pos t: s ome pos tcondition
 */
 int f(int p, int q) throws E xception;
}

interface B {
 /**
 * pre : s ome other precondition
 * pos t: s ome other pos tcondition
 */
 int f(int p, int q) throws MyException;
}

BBBB

CCCC

Pattern 4.5: Multiple interface inheritance

AAAA

47

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 93 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Independent definition and join, 2ndIndependent definition and join, 2ndIndependent definition and join, 2ndIndependent definition and join, 2nd
exampleexampleexampleexample

interface C extends A, B {
 /**
 * @join@join@join@join
 * pre : A.pre or B .pre
 * pos t: A.pos t and B .pos t
 */
 int f(int p, int q) throws MyException;
}

BBBB

CCCC

Pattern 4.5: Multiple interface inheritance

AAAA

Page 94 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

3 rules + genera l guidance

Addres s es is s ues rela ted to ambiguity a nd intent.

1 . Repeated implementation inherita nce rule

2. Implementation redefinition rule

3. Independent implementa tion definition rule

The genera l guida nce recommends us e of multiple implementation
inheritance only for leve l D s oftware, and in accordance with the
above rules .

De lega tion is the recommended work a round in Java and C++.

The Ada Ra tiona le offers a s tandard work a round for Ada 95.

Pattern 4.6: Multiple implementation inheritance

48

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 95 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

• Involves the compos ition of competing implementa tions developed
a long s epa ra te pa ths (ra ther tha n the extens ion of a s ingle
s upercla s s implementation a long a s ingle pa th)

• Involves the compos ition of executa ble elements (ra ther than
interface s pecifica tions)

• Involves the compos ition of elements tha t reference one another
(s ometimes in s ubtle ways)

Background: Multiple implementation inheritance

Page 96 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

• Ma y introduce dea d or deactiva ted code and data referenced only
by overridden (unchos en) implementa tions

• Is difficult to implement well (C++ vs . E iffe l)

• Ha s a n accepta ble work a round (delegation)

Background: Multiple implementation inheritance

49

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 97 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Delegation

AAAA

BBBB

Delega tion of client ca lls to B ::m(int) to A::m(int)

m(a : int)

m(a : int)

cla s s A {
 …
 int m(int a) { … }
}

cla s s B {
 priva te A delega teA delega teA delega teA delega te;
 ...
 public int m(int a) {
 return delega te.m(a);delega te.m(a);delega te.m(a);delega te.m(a);
 }
}

Page 98 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Background: Delegation as a work around for MI

S ingle inherita nce +
de lega tion

Inherita nce of the
implementa tion of one
s upercla s s

Delega tion to the
implementa tion of a nother

BBBBAAAA

CCCC

50

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 99 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

1. Repeated implementation inheritance rule
When the same feature (method or attribute) is
inherited by a class via more than one path
through the interface hierarchy, this should (by
default) result in a single feature in the subclass.

CCCCBBBB

DDDD

AAAA

Pattern 4.6: Multiple implementation inheritance

Page 100 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Repea ted implementa tion inheritanc e withRepea ted implementa tion inheritanc e withRepea ted implementa tion inheritanc e withRepea ted implementa tion inheritanc e with
s ha rings ha rings ha rings ha ring

cla s s A {
priva te :
 int a ;int a ;int a ;int a ;

public:
 /**
 * pre : s ome precondition
 * pos t: s ome pos tcondition
 */
 int f (int p , int q); // referenc es a , c a lls nint f (int p , int q); // referenc es a , c a lls nint f (int p , int q); // referenc es a , c a lls nint f (int p , int q); // referenc es a , c a lls n

protected:
 /**
 * pre : s ome other precondition
 * pos t: s ome other pos tcondition
 */
 float n (int x);float n (int x);float n (int x);float n (int x);
}

CCCC

DDDD

AAAA

BBBB

Pattern 4.6: Multiple implementation inheritance

51

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 101 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s B : public v irtua lv irtua lv irtua lv irtua l A {
protected:
 /**
 * @override
 */
 floa t n (int x);
}
cla s s C: public v irtua lv irtua lv irtua lv irtua l A {}
cla s s D: public B , public C {
protected:
 /**
 * @ join
 */
 floa t n (int x) { … }
}

CCCC

DDDD

AAAA

Pattern 4.6: Multiple implementation inheritance

BBBB

Page 102 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Repea ted implementa tion inheritanc e withRepea ted implementa tion inheritanc e withRepea ted implementa tion inheritanc e withRepea ted implementa tion inheritanc e with
replic a tionreplic a tionreplic a tionreplic a tion

cla s s A {
priva te :
 int a ; int a ; int a ; int a ;
 public:
 /**
 * pre : s ome precondition
 * pos t: s ome pos tcondition
 */
 int f (int p , int q); // referenc es a , c a lls n int f (int p , int q); // referenc es a , c a lls n int f (int p , int q); // referenc es a , c a lls n int f (int p , int q); // referenc es a , c a lls n

protected:
 /**
 * pre : s ome other precondition
 * pos t: s ome other pos tcondition
 */
 float n (int x);float n (int x);float n (int x);float n (int x);
}

CCCC

DDDD

AAAA

Pattern 4.6: Multiple implementation inheritance

BBBB

52

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 103 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s B : public A {
protected:
 /**
 * @override
 */
 floa t n (int x);
}
cla s s C: public A {}
c la s s D: public B , public C { // @replic a te Ac la s s D: public B , public C { // @replic a te Ac la s s D: public B , public C { // @replic a te Ac la s s D: public B , public C { // @replic a te A
public :public :public :public :
 /** /** /** /**
 * @join * @join * @join * @join
 */ */ */ */
 int f (int p , int q) { … } int f (int p , int q) { … } int f (int p , int q) { … } int f (int p , int q) { … }
protec ted:protec ted:protec ted:protec ted:
 /** /** /** /**
 * @join * @join * @join * @join
 */ */ */ */
 float n (int x) { … } float n (int x) { … } float n (int x) { … } float n (int x) { … }
}}}}

CCCC

DDDD

AAAA

Pattern 4.6: Multiple implementation inheritance

BBBB

Page 104 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

When a subclass inherits different
definitions of the same method [as a result
of redefinition along separate paths], the
definitions must be combined by explicitly
defining a method in the subclass that
follows the simple overriding rule with
respect to each parent class.

CCCCBBBB

DDDD

AAAA
2. Implementation redefinition rule

Pattern 4.6: Multiple implementation inheritance

53

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 105 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Imp lementa tion redefinitionImplementa tion redefinitionImplementa tion redefinitionImplementa tion redefinition

cla s s A {
priva te :
 int a ;int a ;int a ;int a ;

public:
 /**
 * pre : s ome precondition
 * pos t: s ome pos tcondition
 */
 int f (int p , int q); // referenc es a , c a lls n int f (int p , int q); // referenc es a , c a lls n int f (int p , int q); // referenc es a , c a lls n int f (int p , int q); // referenc es a , c a lls n

protected:
 /**
 * pre : s ome other precondition
 * pos t: s ome other pos tcondition
 */
 float n (int x);float n (int x);float n (int x);float n (int x);
}

CCCC

DDDD

AAAA

Pattern 4.6: Multiple implementation inheritance

BBBB

Page 106 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s B : public virtua l A {
public:
 /**
 * @override
 */
 int f (int p , int q); s till re ferenc es a , c a lls n int f (int p , int q); s till re ferenc es a , c a lls n int f (int p , int q); s till re ferenc es a , c a lls n int f (int p , int q); s till re ferenc es a , c a lls n
protected:
 /**
 * @override
 */
 float n (int x);float n (int x);float n (int x);float n (int x);
}

CCCC

DDDD

AAAA

Pattern 4.6: Multiple implementation inheritance

BBBB

54

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 107 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s C: public virtua l A {
priva te :
 int b;int b;int b;int b;

public:
 /**
 * @override
 */
 int f (int p , int q); // referenc es b int f (int p , int q); // referenc es b int f (int p , int q); // referenc es b int f (int p , int q); // referenc es b
}

CCCC

DDDD

AAAA

Pattern 4.6: Multiple implementation inheritance

BBBB

Page 108 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s D: public B , public C {
public:
 /** /** /** /**
 * @join * @join * @join * @join
 */ */ */ */
 int f (int p , int q) { … } int f (int p , int q) { … } int f (int p , int q) { … } int f (int p , int q) { … }
protected:
 /** /** /** /**
 * @join * @join * @join * @join
 */ */ */ */
 float n (int x) { … } float n (int x) { … } float n (int x) { … } float n (int x) { … }
}

CCCC

DDDD

AAAA

Pattern 4.6: Multiple implementation inheritance

BBBB

55

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 109 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

3. Independent implementation
definition rule
When more than one parent independently
defines a method with the same signature,
the user must explicitly decide whether
they represent the same method or
whether this represents an error.

If they are intended to be different,
renaming should be used to distinguish
them. Otherwise an overriding method
should be explicitly defined in the subclass
to combine them.

BBBBAAAA

CCCC

Pattern 4.6: Multiple implementation inheritance

Page 110 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Independent implementa tionIndependent implementa tionIndependent implementa tionIndependent implementa tion
inheritanc einheritanc einheritanc einheritanc e

cla s s A {
priva te :
 int a ;int a ;int a ;int a ;

public:
 /**
 * pre : s ome precondition
 * pos t: s ome pos tcondition
 */
 int f (int p , int q); // referenc es a , c a lls n int f (int p , int q); // referenc es a , c a lls n int f (int p , int q); // referenc es a , c a lls n int f (int p , int q); // referenc es a , c a lls n

protected:
 /**
 * pre : s ome other precondition
 * pos t: s ome other pos tcondition
 */
 float n (int x);float n (int x);float n (int x);float n (int x);
}

BBBB

CCCC

Pattern 4.6: Multiple implementation inheritance

AAAA

56

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 111 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s B {
priva te :
 int b;int b;int b;int b;

public:
 /**
 * pre : s ome precondition
 * pos t: s ome pos tcondition
 */
 int f (int p , int q); // referenc es b, c a lls z int f (int p , int q); // referenc es b, c a lls z int f (int p , int q); // referenc es b, c a lls z int f (int p , int q); // referenc es b, c a lls z

protected:
 /**
 * pre : s ome other precondition
 * pos t: s ome other pos tcondition
 */
 float z ();float z ();float z ();float z ();
}

BBBB

CCCC

Pattern 4.6: Multiple implementation inheritance

AAAA

Page 112 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

cla s s C: public A, public B {
public:
 /** /** /** /**
 * @join * @join * @join * @join
 */ */ */ */
 int f (int p , int q) { … } int f (int p , int q) { … } int f (int p , int q) { … } int f (int p , int q) { … }
}

BBBB

CCCC

Pattern 4.6: Multiple implementation inheritance

AAAA

57

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 113 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.7: Re-usable Components

A proces s pa ttern ra ther tha n a des ign pa ttern

5 guidelines

Addres s es the reus e of certifica tion a rtifa cts in genera l

Addres s es component requirements a nd s ys tem requirements
traceability

Addres s es the tes ting of re-us able components , e .g., in contexts
where not a ll opera tions a re us ed

Page 114 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Reuse/retest issues

“The reus e of s oftware a cros s products or s ys tems ra is es s evera l is s ues ,
es pecia lly in the a rea of re-tes t of the s oftwa re.” [AVS I Guide, p. 29]

100% coverage of Stacks

Bus Communications
5 methods & attributes: 100% coverage,
5 methods & attributes: 0% coverage

100% coverage of Stacks

100% coverage of Bus Communications

System

Stacks

System
Verification

System
Requirements

Stacks Verification

Bus Communications
Verification

Stacks Requirements

Bus Communications
RequirementsBus Communications

58

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 115 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Reuse/retest issues

“At the applica tion level, five of thes e a re us ed and can be s hown to be tes ted a t the
s ys tem level. The other five a re deactiva ted for this applica tion. However, thes e five
requirements a re s till tes ted by re-executing the tes t ca s es that were previous ly
developed s pecifica lly for the component.” [AVS I Guide, p. 29]

100% coverage of Stacks

Bus Communications
5 methods & attributes: 100% coverage,
5 methods & attributes: 0% coverage

100% coverage of Stacks

100% coverage of Bus Communications

System

Stacks

Bus Communications

System
Verification

System
Requirements

Stacks Verification

Bus Communications
Verification

Stacks Requirements

Bus Communications
Requirements

Page 116 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.7: Re-usable Components

Component certification package
“Each component mus t have a complete , reus able certific a tion pac kage reus able certific a tion pac kage reus able certific a tion pac kage reus able certific a tion pac kage,
jus t a s the s oftwa re its elf is intended to be reus able .”

“The component mus t conta in a ll of the a rtifa c ts a ll of the a rtifa c ts a ll of the a rtifa c ts a ll of the a rtifa c ts needed to certify a t or
above the s oftwa re level of the applica tion.”

“This s hould include the certifica tion planning dataplanning dataplanning dataplanning data tha t were origina lly
us ed to develop the component. This planning data may differ from the
plans us ed to develop the application code in the fina l s ys tems ; however,
thes e plans mus t be s ubmitted to certifica tion agencies each time a s ys tem
application is made. The PS ACPS ACPS ACPS AC of the fina l s ys tem s hould reference this
planning data .”

59

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 117 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.7: Re-usable Components

Component requirements specification
“Each component mus t have its own complete s et of requirements . This
s hould include a high-level S W requirement s pecification and low-level
requirements , a s thes e a re defined in DO-1 78B , a long with any
a rchitectura l cons idera tions .”

“It is important tha t requirements s pec ify the required interfa cess pec ify the required interfa cess pec ify the required interfa cess pec ify the required interfa ces
unambiguous ly, a long with any underlying a s s umptions in the a rchitecture ,
s o tha t it is clea r to the application developers whether the component is fit
for us e in the intended applica tion.”

“A clear s et of requirements will help la ter app lic a tion developers avoidwill help la ter app lic a tion developers avoidwill help la ter app lic a tion developers avoidwill help la ter app lic a tion developers avoid
thinking tha t s ome of the s oftwa re in the c omponent is dead codethinking tha t s ome of the s oftwa re in the c omponent is dead codethinking tha t s ome of the s oftwa re in the c omponent is dead codethinking tha t s ome of the s oftwa re in the c omponent is dead code.”

Page 118 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.7: Re-usable Components

System requirements traceability and the identification of
deactivated code/data
“There mus t be s ome appropria te connection in the trace matrix between
the application's high-level s oftwa re requirements and the appropriate high-
level requirements of the component.”

“In s ome ca s es , this may be a direct trace … However, other lower-lever
requirements may be derived.”

“The pa rts of the c omponent not us ed in the app lic a tion s hould beThe pa rts of the c omponent not us ed in the app lic a tion s hould beThe pa rts of the c omponent not us ed in the app lic a tion s hould beThe pa rts of the c omponent not us ed in the app lic a tion s hould be
indic a ted a s unus ed s omewhere in the app lic a tion da taindic a ted a s unus ed s omewhere in the app lic a tion da taindic a ted a s unus ed s omewhere in the app lic a tion da taindic a ted a s unus ed s omewhere in the app lic a tion da ta .”

60

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 119 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.7: Re-usable Components

Component testing
““““Each component mus t have tes ts written which verify the code aga ins t a ll
of the component requirements .”

“Applica tion requirements tha t trace to component requirements may make
us e of thes e tes t ca s es to s how coverage. S tructura l coverage da ta mus t
a ls o have been collected to s how 1 00% coverage of the code or include an
ana lys is if collection did not a chieve 1 00% .”

Page 120 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.7: Re-usable Components

Component testing
“DO-1 78B requires tes ts to be run on the fina l pla tform or equiva lent
s imula tion environment. Therefore, if the fina l object code of the
component s oftware ha s not been previous ly tes ted on the fina l or
equiva lent platform, its tes t ca s es mus t be re-executed on tha t pla tform.”

“If the bit-pa ttern of the object code of the component ha s not changed,
there is no need to re-collect the s tructura l coverage data , a s the pa ths
have not changed. If the object code of the component is changed in s ome
way (e .g., different compiler, different compiler vers ion, different
optimiza tion options), s tructura l coverage da ta s hould be re-collected a s the
compiler may have introduced new paths into the object code”

61

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 121 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.7: Re-usable Components

Structural coverage of unused (deactivated) code
“The S tructura l Coverage Ana lys is Res olution rules for Deac tiva ted c odeDeac tiva ted c odeDeac tiva ted c odeDeac tiva ted c ode
in s ection 6.4.4.3 of DO-1 78B apply to the component functions tha t a re not
intended to be executed.”

Page 122 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.8: Template classes and template operations

5 rules + genera l guidance

Addres s es the tes ting of individua l ins tantia tions

Addres s es s itua tions where the us e of templa tes is problematic

Addres s es is s ues rela ted to the manner in which templa tes a re
ins tantia ted

Provides a cons is tent view of templa te ins tantia tion and inline
expa ns ion

62

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 123 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.8: Template classes and template operations

Templates should be instantiated and tested with each type argument
to parameter binding in the system unless:
1. the types map to the same underlying representation
2. and the object code can be shown to be equivalent

Page 124 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.8: Template classes and template operations

Nested templates, templates with child packages (Ada), and templates
with friend classes (C++) should be prohibited for levels A, B, and C.
Formal "inout" should be prohibited for levels A, B, and C.
Templates should be compiled using "macro-expansion" rather than
"code sharing".
For macro-expanded templates, the guidelines for inlining should be
followed inasmuch as they apply.

63

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 125 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Pattern 4.8: Template classes and template operations

Object code equivalence
Equiva lence implies that no object code ha s been added or removed
between the two vers ions of object code, a lthough ba s e addres s es and
references to cons tants may differ.

For example , if the op-codes (e.g., 32-bit ins tructions for copy/move/etc. in
a ll vers ions) and the code s equence are the s ame, and the s ta ck frames
a re the s ame s ize and have the s ame offs ets (ba s e addres s es can differ)
then equiva lence can be s hown.

Control va riables and cons tants can be different, but s hould be s hown to be
of the s ame s ize and us age s hould be s hown to be cons is tent. This
definition of equiva lence, however, is not intended to be complete .

Page 126 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Section 3.1 Notes On Inlining

5 notes

Addres s the impact of inlining on:

• da ta and control flow ana lys is (FA)

• s tack us a ge a nd timing a na lys is (S U & TA)

• s ource code to object code tra ceability

• s tructura l coverage ana lys is (S C)

64

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 127 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Section 3.1 Notes On Inlining

Impact of inlining on data and control flow analysis
“Flow Ana lys is , recommended for levels A-C, is impacted by Inlining (jus t
what a re the da ta coupling and control coupling rela tions hips in the
executable code?).”

“The data coupling and control coupling re la tions hips can trans fer from the
inlined component to the inlining component.”

As a res ult, “da ta c oupling and control coupling s hould take intoAs a res ult, “da ta c oupling and control coupling s hould take intoAs a res ult, “da ta c oupling and control coupling s hould take intoAs a res ult, “da ta c oupling and control coupling s hould take into
acc ount the inlining of code inc luding ca ll tree and da ta s et/us eacc ount the inlining of code inc luding ca ll tree and da ta s et/us eacc ount the inlining of code inc luding ca ll tree and da ta s et/us eacc ount the inlining of code inc luding ca ll tree and da ta s et/us e
ana lys is .”ana lys is .”ana lys is .”ana lys is .”

Page 128 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Section 3.1 Notes On Inlining

Impact of inlining on stack usage and timing analysis
“S ince inline expans ion can e limina te pa rameter pa s s ing, this can effect the
amount of information pus hed on the s ta ck a s well a s the tota l amount of
code genera ted.”

“This , in turn, can effect the s tack us age and the timing ana lys is .”

As a res ult, “s tac k us age and timing ana lys is s hould take into ac c ountAs a res ult, “s tac k us age and timing ana lys is s hould take into ac c ountAs a res ult, “s tac k us age and timing ana lys is s hould take into ac c ountAs a res ult, “s tac k us age and timing ana lys is s hould take into ac c ount
the inlining of c ode.”the inlining of c ode.”the inlining of c ode.”the inlining of c ode.”

65

FAA National Software Conference, May 2002
Object Oriented Guidelines

 Gary Daugherty

Page 129 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Section 3.1 Notes On Inlining

Impact of inlining on structural coverage analysis
“For inline expans ion in level A s oftware , s ource code s hould be traced to
object code a t each point of expans ion.“

“Inline expans ion may not be handled identica lly a t different points of
expans ion.”

“This can be es pecia lly true when inlined code is optimized.”

As a res ult, “if objec t c ode is removed or objec t c ode is added, a sAs a res ult, “if objec t c ode is removed or objec t c ode is added, a sAs a res ult, “if objec t c ode is removed or objec t c ode is added, a sAs a res ult, “if objec t c ode is removed or objec t c ode is added, a s
determined by the s ourc e to objec t code trac e , then s truc tura ldetermined by the s ourc e to objec t code trac e , then s truc tura ldetermined by the s ourc e to objec t code trac e , then s truc tura ldetermined by the s ourc e to objec t code trac e , then s truc tura l
c overage mus t be verified s epa rate ly for each expans ion.”c overage mus t be verified s epa rate ly for each expans ion.”c overage mus t be verified s epa rate ly for each expans ion.”c overage mus t be verified s epa rate ly for each expans ion.”

And, “s truc tura l c overage tools [may] need to know what will beAnd, “s truc tura l c overage tools [may] need to know what will beAnd, “s truc tura l c overage tools [may] need to know what will beAnd, “s truc tura l c overage tools [may] need to know what will be
inlined and what w ill not be inlined when inlining is reques ted.”inlined and what w ill not be inlined when inlining is reques ted.”inlined and what w ill not be inlined when inlining is reques ted.”inlined and what w ill not be inlined when inlining is reques ted.”

